Problem 1. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

$$
x f(x+f(y))=(y-x) f(f(x))
$$

Problem 2. In triangle $A B C$, the incircle touches sides $B C, C A, A B$ at $D, E, F$ respectively. Assume there exists a point $X$ on the line $E F$ such that

$$
\angle X B C=\angle X C B=45^{\circ} .
$$

Let $M$ be the midpoint of the arc $B C$ on the circumcircle of $A B C$ not containing $A$. Prove that the line $M D$ passes through $E$ or $F$.

Problem 3. For each positive integer $n$, denote by $\omega(n)$ the number of distinct prime divisors of $n$ (for example, $\omega(1)=0$ and $\omega(12)=2$ ). Find all polynomials $P(x)$ with integer coefficients, such that whenever $n$ is a positive integer satisfying $\omega(n)>2023^{2023}$, then $P(n)$ is also a positive integer with

$$
\omega(n) \geq \omega(P(n))
$$

Problem 4. Find the greatest integer $k \leq 2023$ for which the following holds: whenever Alice colours exactly $k$ numbers of the set $\{1,2, \ldots, 2023\}$ in red, Bob can colour some of the remaining uncoloured numbers in blue, such that the sum of the red numbers is the same as the sum of the blue numbers.

