Wednesday, May 10, 2023

Problem 1. Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$,

$$xf(x+f(y)) = (y-x)f(f(x)).$$

Problem 2. In triangle ABC, the incircle touches sides BC, CA, AB at D, E, F respectively. Assume there exists a point X on the line EF such that

$$\angle XBC = \angle XCB = 45^{\circ}$$

Let M be the midpoint of the arc BC on the circumcircle of ABC not containing A. Prove that the line MD passes through E or F.

Problem 3. For each positive integer n, denote by $\omega(n)$ the number of distinct prime divisors of n (for example, $\omega(1) = 0$ and $\omega(12) = 2$). Find all polynomials P(x) with integer coefficients, such that whenever n is a positive integer satisfying $\omega(n) > 2023^{2023}$, then P(n) is also a positive integer with

$$\omega(n) \ge \omega(P(n)).$$

Problem 4. Find the greatest integer $k \leq 2023$ for which the following holds: whenever Alice colours exactly k numbers of the set $\{1, 2, \ldots, 2023\}$ in red, Bob can colour some of the remaining uncoloured numbers in blue, such that the sum of the red numbers is the same as the sum of the blue numbers.